Air Velocity-FTM94/95

www.eyc-tech.com

Industrial High Accuracy Thermal Mass Flow Transmitter

Suitable for harsh environments, industrial processes flow monitoring or slightly corrosion compressed air

Features

- IP67 Rugged aluminum alloy case, fit in variety harsh environment
- Easy to install, high accuracy, long-term stability
- Switchable physical quantities: m/s, ft/s, Nm³/h, Nm/s, L/min, m³/min (Air velocity & volume)
- LCD Display of air velocity and temperature
- LCD Display of cumulative flow: m³, L (Option)

Introduction

FTM94/95 Hot wire thermal air velocity transmitter working at a constant Temp. using King's law heat balance equation for:

e: Sensor voltage output(V)

a' : Zero output of constant temperature hot wire anemometer, Can use CTA circuit as temperature compensation

 $e^2 = a' + b' v^n$

b': Sensitivity of the sensor, related to the operating temperature

v: Fluid flow rate

n: 0.45 ... 0.5(Standard)

Can be calculated from the formula characteristic curve of constant Temp. hot wire anemometer, special three PT probe and full metal housing design, high accuracy, suitable for a variety of pipe diameters, widely used in industrial fields.

| Applications |

Exhaust gas removal / Dust environment / Slightly corrosive environment / Burner feeder / Biotechnology industry / Factory building air intake / Exhaust calculation

www.eyc-tech.com

| Specification |

In	n		+
ш	μ	u	ι

Input type	Pt20 / Pt300 (Air velocity) / Pt1000 (Temp.)
Measuring range	0 120 Nm/s
	N: Working condition (Definition: 20°C at 1013 hPa)
	Units can be converted Nm/s (Flow rate) or
	Nm³/h(Flow)(Option) or m³(Cumulative flow)(Option)
Minimum initial value	0.1 Nm/s

Output

Installation angle effect	<3% of the measured value (When the installation angle $<$ 10
Signal	4 20 mA / 0 10 V / RS-485 / Impulse
Preset output	Out1 : Air velocity;Out2 : Impulse
Impulse range (1 500 Hz)	(1)1 500 Hz : 4 20 mA, (2)1 500 Hz : 0 10 V
Signal connection	3-wire
Warm-up time	<60 sec
Reaction time	t90<5 sec
Display type	LCD Module with back light, double-row
	(Up air velocity, down temperature(Default: 0 120°C))
Load resistance	Current output : ≦500 Ω, Voltage output : ≧100 KΩ

Accuracy

	$\label{eq:Accuracy} \textbf{Accuracy} \ (\textbf{Including hysteresis},$	0 40 m/s : ±(1% of mv+0.5 m/s)
non-linearity and repeatability)		40 60 m/s : \pm (1% of mv+1 m/s)
		90 120 m/s : \pm (1% of mv+1.5 m/s)
	Temp. influence	0.2% / °C
	Repeatability	0.5%
	Uncertainty of factory calibration	±1%

Electrical

Power supply	DC 24 V±10%
Current consumption	<0.3 A
Overvoltage protection	DC: <40 V
Electrical connections	M12 connector / M16 metal cable gland

Environmental

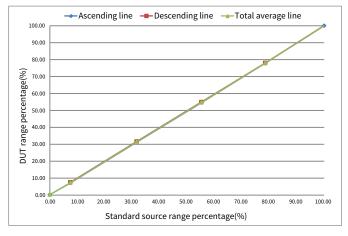
Measuring medium	Air
Operating Temp.	-20 +60°C
Operating Humid.	0 95%RH(Non-condensing)
Probe operating Temp.	0 120°C / Option:200°C
	(Increasing operating temperature
	will affect air velocity error)
Storage Temp.	-20 +60°C
Storage Humid.	0 95%RH(Non-condensing)
Probe pressure	16 bar

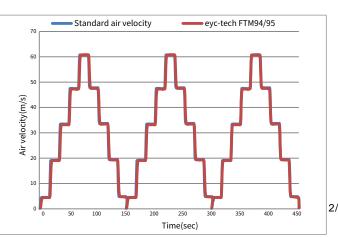
Installation

Fixed seat	1/2"PT movable thread
Installation	Duct type
	Remote type

Protection

IP rating	IP67(Probe); IP65(Housing)
Electrical protection	■ Reverse polarity
	■ Over-voltage
	■ Short-circuit

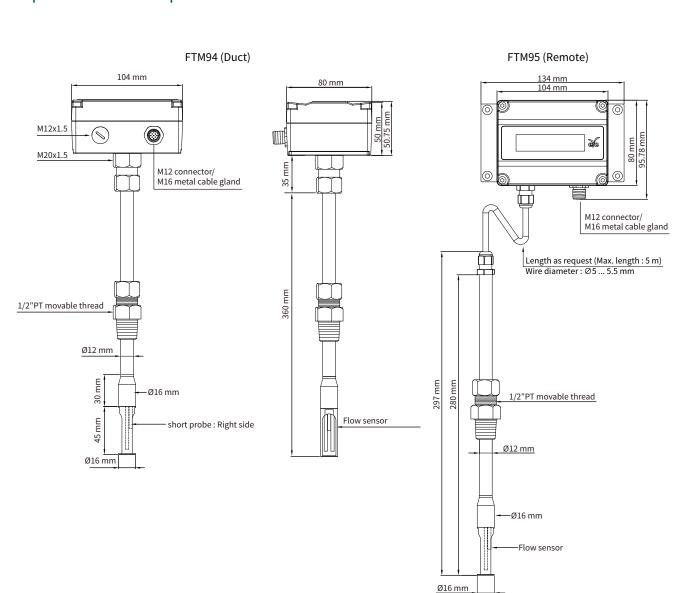

Certification


Certification CE

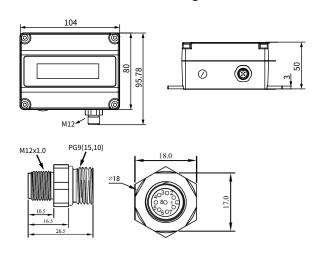
Material

Housing	Aluminum alloy
Probe	SUS316
Remote probe cable	TEFLON (Remote FTM95)
Weight	FTM94:720 g
	FTM95: 832 g

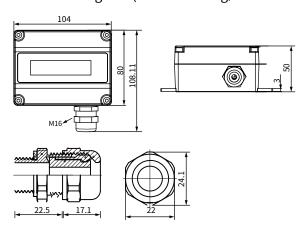
3-Cycle curve



www.eyc-tech.com



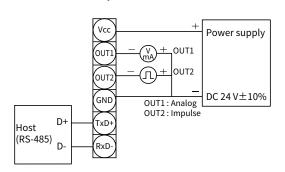
| Dimension | Unit:mm

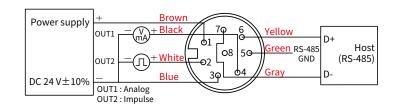


Electrical Connector | Unit: mm

M type: M12 connector (RS-485+analog)

N type: M16 metal cable gland (RS-485+analog)





Air Velocity-FTM94/95

www.eyc-tech.com

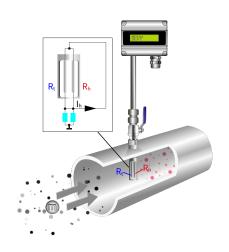
| Diagram | Analog+RS-485 & Impulse

*Please make sure the product and the device which connect with RS-485 are on common ground, avoid damaged product.

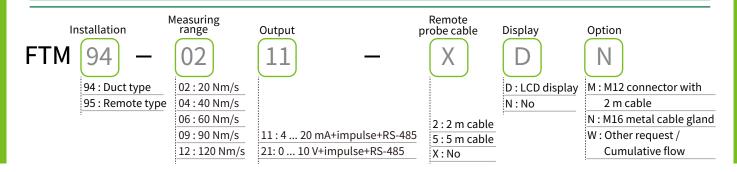
Hot-wire measurement principle

The thermal measuring principle abstraction of heat from a heated body by an enveloping gas flow (Hot-film Anemometer)

T between Rh and Rt = constant


The loss of heat depends on the number of molecules that collide with Rh

m: Mass flow


: Heating current

: Platinum thin-film resistor - electrically heated

Rt : Platinum thin-film resistor - gas temperature

Ordering Guide |

| Additional Option Test Report | For more detailed information please contact us.

ILAC / TAF

YUDEN-TECH CO.,LTD. Calibration Laboratory - (ILAC / TAF) Test report. (TAF accreditation: 3032, complying with ISO / IEC 17025) TAF has mutual recognition arrangement with ILAC MRA

Project	Measurand level or range
Air velocity transmitter	0.2 m/s 60 m/s

ISO 9001

Project	Measurand level or range	
Air velocity / Air volume	Air velocity: ≦ 120 m/s	_
	Air volume : 0.5 m³/h 1000 m³/h	⁻ 4/4