國際視窗

風速計自動品管檢測 統之研

關玉蘋¹、蔡明忠¹、朱仁誠²、朱信燁² 國立臺灣科技大學自動化及控制研究所

摘要

本研究目的在建構一套風速計自動品管檢測系統。系統包含 PC 端的人機檢測介面、實驗腔體 (風 洞)、風速感測器及資料擷取模組等。風洞乃以流體力學為基礎,製造均速穩定的流體。系統透過資料 擷取卡控制馬達轉速,改變風速。並擷取待測風速計與參考風速計的風速訊號,計算風速計品質特性、 並產出風速計品管檢驗報表。本系統特性包括(1)可控制風速之檢測腔體(風洞)建構;(2) PC - based 自動化風速控制與品管檢測人機介面;(3) 風速自動品管檢驗報表輸出。經實驗結果 顯示,本系統可有效的自動進行風速計之品質檢測、節省時間,控制其品質與穩定度。

關鍵字:風洞、風速計、品管檢測、自動化、資料擷取。

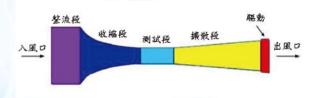
一、前言

在農、工業生產和科學研究試驗中・流量都是一個很重要的參數。例如,在石油化工生產過程自動檢 測和控制中,為了有效地操作控制和監測,需要檢測各種流體的流量。此外,對物料總量的計量還是能 源管理和經濟核算的重要依據。所謂流量,是指單位時間內流體(氣體,液體、粉末或固體顆粒等)流 經管道或設備某處橫截面的數量,又稱瞬時流量。當流體以體積表示時稱為體積流量,以質量表示時稱 為質量流量。用於測量流量的計量器具稱為流量計,通常由一次裝置和二次儀表組成。一次裝置安裝於 流體導管內部或外部,根據流體與一次裝置相互作用的物理定律,產生一個與流量有確定關係的信號。 一次裝置又稱流量的傳感器,二次儀表接受一次裝置的信號,並轉換成流量顯示信號或輸出信號。[1] 現代工業中・流量測量應用的領域廣泛・由於各種流體性質不同・測量時隨其狀態(壓力・溫度)差 異也不盡相同,因此採用了各種方法和流量儀表進行流量的測量,測量方法大致可以歸納為以下幾類 [2]:

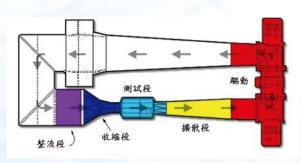
- (1)利用伯努利方程原理‧通過測量流體差壓信號來反映流量的差壓式流量量測量法。
- (2)透過直接測量流體流速來得出流量的速度式流量測量法。
- (3)利用標準小容積來連續測量流量的容積式測量法。

(4)以測量流體質量流量為的目的的質量流量測量法。

常用的流量計分為(1)體積流量計與(2)質量流量計。其中質量流量計又可分為(1)直接式與(2)間接式。直接式質量流量計的輸出信號直接反映質量流量,其測量較不受流體的溫度、壓力、密度變化的影響。直接式質量流量計有如下形式:(1)熱線式質量流量計(2)差壓式質量流量計(3)科里奧利質量流量計。


其中熱線式質量流量計的基本原理是利用外部熱源對管道內的熱電偶加熱,熱能被流體帶走,透過測量因流體流動而造成的熱量(溫度)變化來反映出流量體的質量流量。熱線式流量計亦可用於量測氣體流速,又稱風速計。

二、風速計品管相關技術介紹


風速計的校驗通常需有一穩定的風速測試環 境,常見的是使用人造風洞,其特性描述如下。

2.1 風洞簡介

一般風洞可分成開迴路與閉迴路風洞。開回路風洞根據風扇裝置的位置可分為吸入式(如圖1)與吹入式。而閉迴路風洞如圖2·空氣的循環可以改善高速試驗的效率。[3]

▲圖1 開迴路吸入式風洞

▲圖2 閉迴路吸入式風洞

這兩種風洞的主要組成有五個部份。整流段 (Setting Chamber)、收縮段(Contraction Cone)、測試段(Test Section)、擴散段 (Diffuser)和驅動段(Drive Section)。[4-5]

(1) 整流段包含整流用的蜂巢狀網·功能是消除 浦風機造成的氣流旋轉運動·從紊流調整 成層流。

- (2) 收縮段加裝於整流段後方。由於流體在高速的情況下會產生紊流,因此需要較寬的整流段入口讓流體在低速的情況下進行整流,變成層流後再緩慢加速,達到試驗需要的速度。
- (3) 測試段放置分析對象或待測物。
- (4)擴散段減緩氣流速度,導引氣流離開。
- (5) 驅動段的主要部份是風扇·作為控制風速 用。

2.2 熱線式風速檢測技術

熱線式風速計乃利用散熱的速率和風速的平方根線性相關推算風速 [6]。熱線式流量計之輸出U可以下式表示:

$$U = U_0 \cdot \sqrt{1 + k \cdot \vec{v}^n} \tag{1}$$

其中

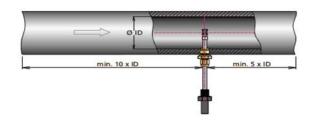
 U_0 : 自由流速偏移

k:流量常數

v:流速(m/s)

n: 次方數

熱線式流量計依加熱方式可分為:


- (1)旁熱式:一般使用錳銅絲為感測元件,其電阻溫度係數接近於零,表面另外裝有溫度感測元件。
- (2)直熱式:一般使用鉑(Pt)絲為感測元件· 在測量風速時亦可直接量測熱線絲本身的溫度· 如圖3所示。

國際視窗

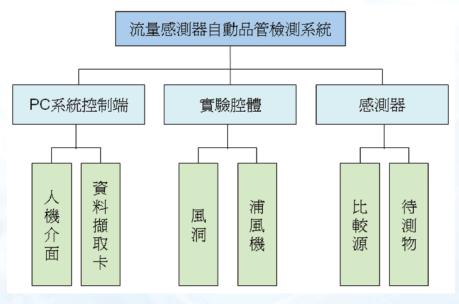
▲圖3 直熱式熱線式風速計探測頭

熱線式風速計的優點為,風速計在小風速時靈 敏度較高,適用於小風速的測量。其缺點為,不 適合高風速量測。而且,當氣溫變化、空氣密度 改變、探針方向與氣流方向不垂直時亦造成誤差, 需作校正,如圖4所示。

流體速率 O 是單位時間 t(sec) 內通過管道某一 截面 $A(m^2)$ 的流體體積 $V(m^3)$ (或質量 kg). 即 $Q = V/t(m^3/\sec) = A \cdot v$ 。因此流體速率也可 變換為管道截面 A 與流速v 的乘積,但工業管道 中的流速通常不是常數,只有將截面劃為許多單 元面積 A_i , 乘以通過的流速 v_i , 流體速率:

$$Q = \sum_{i=1}^{n} A_i v_i \tag{2}$$

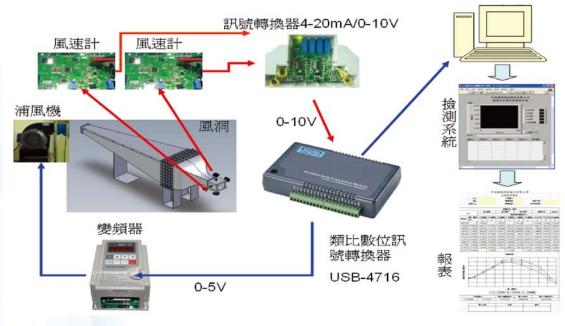
另外,如管流在30倍直徑後,流體的粘滯作用 會使管內的流速分佈呈現對稱於圓心的充分發展 流。在這種情況,只需測直徑方向上單點流速, 就可以準確地推算流體平均速率。[3]


◀圖4 風速計在風洞中的安裝位置

三、自動品管檢測系統架構

3.1 系統組成

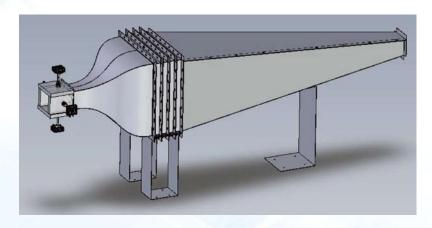
系統透過人機介面,可自動控制風速並進行檢測,達到自動計算數據品質、產生報表的目標。系統包 含 PC 控制端、實驗腔體機構、風速感測器,如圖 5 所示。


因風扇馬達及感測元件所使用的訊號是類比訊號,要使用電腦來控制這些類比裝置或接受類比感測訊 號,就必須利用 PC 界面卡轉換數位訊號和類比訊號。本研究採用研華所發行的 USB 4716 介面模組, 利用 USB 的相容性與高速傳輸·傳送與接收資料·其類比輸入具備有 16 位元的分辨率·一秒鐘可接收 20 萬筆 (200 kS/s) 的採樣速率,亦可提供 0-10V 的輸出訊號。[7]

▲圖5 風速感測器自動檢測系統組成圖

本研究發展之風速感測系統檢測架構如圖 6。其包含上述三大組成架構,以 PC 端為主控端,藉由 DAQ 卡對實驗腔體作資料擷取與風速控制。風速計所產生的訊號進入數據擷取卡經 A / D 轉換,由軟體儲存數據。PC 系統控制端藉由資料擷取卡取得實驗腔體中風速計訊號,在 PC 端分析訊號差異,並計算出感測器的精確度。

本系統依檢測需求建構一可控風速實驗腔體·可容納待測風速感測器與做為比較源之風速計·其硬體架構如圖 6。電腦送出電壓訊號 0-5V 控制浦風機轉速·量測到電壓 0-10V 轉換成風速 m/s。



▲圖6 風速自動品管檢測系統架構圖

3.2 風速實驗腔體建構

在系統硬體開發中,需對於風洞功能需求評估,其在設計製造風洞之前,需考慮本研究需要的風速範圍和待測區大小,設計製造出符合需求的風洞。

目前風速計的檢測數須能裝置一支比較源與三支待測風速計,以FTS04 風速計品管檢測需求可知風洞的測試段直徑達 15 公分已足夠。而風速的範圍須達60m/s,為符合此需求,收縮段的收縮比須大於4,故收縮段最大直徑為60 公分。考量風扇的規格來決定擴張段的長度與安置的位置。根據現有吹出式浦風機(直徑 15 公分)與 AMCA 的規

▲圖7 吹入式風洞設計圖

範(擴張角需小於 7 度)[8]·擴張段長度 180 公分·為吹入式風洞。三層整流網與一層蜂巢網厚度達60 公分。風洞全長為 240 公分·符合實驗室大小。為有效利用現有吹入式浦風機·本研究新設計一吹入式開路風洞·設計圖如圖 7。

圃

國際視窗

其中收縮段的曲線為符合流線效果·需特別計算。參考 G.Johl 的計算 [4]並加以修改可得收縮段(正 方形截面)之曲線方程,匹配點為收縮段長度之41%。

從進風口座標x = 0到匹配點x = 24.6的收縮段高度(以中心軸計) h_x 為:

$$h_{x} = h_{2} + \left\{ \left(h_{1} - h_{2} \right) \times \left[1 - \frac{\left(\frac{x}{L} \right)^{3}}{\left(\frac{X_{m}}{L} \right)^{2}} \right] \right\}$$

$$(3)$$

從匹配點 x=24.6 到出風口 x=60 的收縮段高度(以中心軸計) h_x 為:

$$h_{x} = h_{2} + \left(h_{1} - h_{2}\right) \times \left\{ \frac{\left[1 - \left(\frac{x}{L}\right)^{3}\right]}{\left[1 - \left(\frac{Xm}{L}\right)^{2}\right]} \right\}$$

$$(4)$$

其中入風口半徑 h1 = 30 公 分; 出風口半徑 h2 = 7.5 公分; 匹配點座標 Xm = 24.6 公分; 收縮段全長 L = 60 公分;由式 (1)及(2)得收縮曲線。經結 合座標圖與風洞尺寸,製作出實 驗所需之風洞,其實體如圖8所 示。

待測感測器

▲圖8 風洞實體斜角視圖

3.3系統檢測流程

風速計品質檢測的檢測流程如 下:首先在風洞中設置比較源與 待測風速感測器,經 PC 端擷取 訊號,由風速計自動品管檢測程 式作待測風速感測器的品質計 算。檢測系統區分為四個流程: 選擇取樣間隔、循環次數、取 樣、品質標的計算與品管報表的 產出,流程如圖9。

▲圖9 風速計自動品管檢測流程圖

風速計自動品管檢測流程說明如下:

(1) 系統設定:

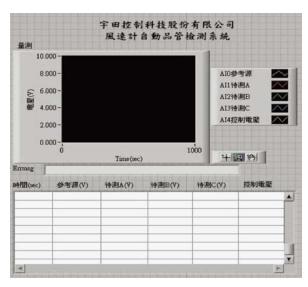
安裝硬體設備(風速計與DAQ卡連線),在Excel報表中預先填妥風速計訊號範圍與風速範圍。

(2) 設定取樣範圍與取樣間隔:

根據檢測需求選擇不同測量排程。

(3) 自動取樣作業:

風洞啟動之後會從起始風速開始根據量程自動增加速度·PC端自動記錄比較源與待測風速計訊號,直到完成所有排程。

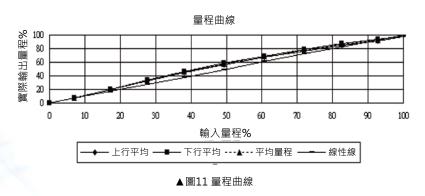

(4) 品質標的計算:

將檢測中記錄下來訊號送到Excel表·自動計算出產品最大誤差、最大不重複性與最大回差。[9]

(5) 品管報表的產出:

數據送自Excel後·確認實驗數據無誤。填 妥檢測時間、大氣溫度等基本資料·即可列 印報表。[10]

本研究依檢測需求建構出一套人機操作介面,採用 PC 系統控制端及資料擷取卡自動擷取風速感測器之訊號,利用圖控軟體發展電腦輔助人機介面,建立品管檢測系統,進行自動檢測。根據品管人員需求,自動檢測的同時,系統能及時監控風洞的風速與量測值,其人機監控介面如圖 10。



▲圖10 人機監控介面設計

3.4 品質指標

本系統檢測之品質因子依量程 差異包括不精確度、誤差、最大 量測誤差、回差等·分述如下 [11-13]:

(1)量程(span)百分比: 給定範圍上下限值之間的 百分比·如圖11所示。

輸入量程百分比=(輸入值/給定範圍)×100%

(2) 不精確度(inaccuracy):

在規定的條件下·按規定程序試驗一個裝置時所觀察到的偏離規定特性曲線的最大正偏差和負偏差。

(3) 誤差 (error):

被測變量的被測值與真值之間的代數差。當被測值大於真值時,誤差為正值。誤差一般以相應理 想量程的百分數表示。

(4) 最大測量誤差 (maximum measured error):

每一測量點上上行程或下行程平均值的最大正或負誤差值。

最大量測誤差 =
$$\max(|最大正偏差|\cdot|最大負偏差|)$$
 (8)

(5)回差(hysteresis):

裝置或儀表依據施加輸入值的方向順序給出對應於其輸入值的不同輸出值的特性。 回差 = 上行量程 - 下行量程 (9)

(6) 不重複性:

不重複性 = [(第一循環誤差% - 第二循環誤差%) · (第二循環誤差% - 第三循環誤差%) · (第 三循環誤差%-第一循環誤差%)] (10)

經以上判斷取得流量感測器誤差值,作為品質的判斷依據。

四、實驗結果與討論

4.1 實驗步驟

實驗開始前,需根據穩定時間、取樣間隔使風速控制訊號程序化。在設定檢測流程時,首先要知道量 測範圍和取樣間隔。根據最大風速調整硬體架構,使輸出訊號能相對應量測範圍的風速。接著利用取樣 間隔算出量測點。

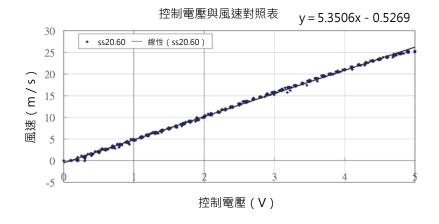
步驟一:首先應測量輸入量程0%後面的第一個有效標度值(例如輸入量程的10%,見表1)。

步驟二:試驗開始時先產生一個相當於範圍下限值的輸入信號,然後將此輸入信號緩慢增大(無過衝) 達到第一個試驗點,適當穩定一段時間後記錄輸入和輸出信號的相應值。

步驟三:然後使輸入信號緩慢增大(無過衝)達到下一個試驗點的值,穩定一段時間後記錄輸出信號的 相應值。

步驟四:在每一個預定值上重複上述過程,直至達到輸入量程的100%。在此點上測量以後,緩慢地將 輸入信號降低到輸入量程100%的下一個試驗值,再依次降至其他每一個值,直到降低至輸入 量程的0%,從而閉合一個測量循環。

測量循環數量 試驗類型 試驗點數量 試驗點的位置(輸入量程的%) 性能評定 0-25-50-75-100 型式試驗 3 11 0-10-20-30-40-50-60-70-80-90-100 例行試驗 3 0-50-100


表1 測量循環與試驗點的數量和試驗點規劃

本系統利用 DAQ 的輸出通道 AO 0 (0 - 10V) 作為風速控制·感測器輸出則經控制端輸入 DAQ 自 動記錄數據、再藉由 PC-based 選擇所需要的品質檢測,預先設定測量程序,讓使用者在啟動時選擇適 當的檢測流程。

4.2 風速控制

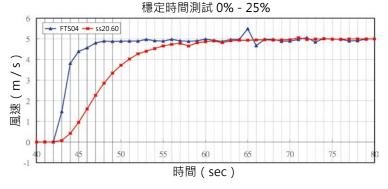
本系統的風速控制電壓為 0 - 5V · 此電壓範圍可使浦風機從靜止達最大轉速或風速。待測區的風速大 小和面積相關。實測控制電壓 0-5V 與待測區風速如圖 12。

浦風機經由變頻器控制電壓從 0V 增加到 5V·並使用 ss20.60 風速計進行量測。由圖可知風速約為控 制電壓的 5.35 倍。此數據可在量測不同風速範圍之風速計時,修改程式中的最大電壓參數。浦風機變 頻器控制電壓與風速關係可經由實驗得知。

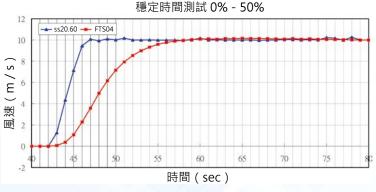
▶圖12 待測區風速與控制電壓關係圖

4.3 系統穩定測試

風洞控制及風速量測之系統 · 根據過程測量和控制裝置 [9] · 量測過程應使訊號緩慢增大達到下一個 試驗點的值,穩定一段時間後記錄輸出信號的相應值。在實驗風洞穩定時間,品管檢驗須取得風速穩定 不上下變化的數據做分析。因此在排定流程時需考量,對浦風機下達指定後風速達穩定的等待時間。量 測風洞穩定時間。作為程式在設定風速控制訊號時,控制訊號的間隔。系統穩定時間主要受浦風機加速 度、感測器反應速率、風洞穩流性能影響。


25%量程穩定測試:

針對總量程 0-20 m/s 之 25% 量 程作測試,如圖13。當浦風機轉速 從 0% 上升至總量程的 25%。FTS04 在 15 秒後達到穩定, ss20.60 在 7 秒後達到穩定。由於參考源 ss20.60 的產品反應時間為1杪,可知在浦風 機在第 40 秒開始,從 0 m/s 加速到 5 m/s 的情況下, 風洞花費 6 秒達指 定速度, 待測 FTS04 的反應速度為 9秒。


50%量程穩定測試:

針對總量程0-20 m/s 之50% 的量程作測試,如圖14。當浦風機 轉速從 0% 上升至總量程的 50%。 FTS04 同樣在 15 秒後達到穩定。

總和以上兩種量程,25%、50%。 總和浦風機加速時間、感測器反應速 率、風洞穩流速率的影響,系統穩定

▲圖13 量程0-25%之穩定時間測試

▲圖14 量程0-50%之穩定時間測試

時間不超過40秒 ·可知將加速間隔設為40秒 ·並取最後10秒的數據作平均 ·可計算得風速計正確的讀值。 為避免控制造成的上下震盪,本系統給定最大風速相對控制電壓,如表1之型式試驗為例,依量程間 隔 10% 給與浦風機指定的轉速控制訊號作上行遞增與下行遞減控制,並連續作三循環。

國際視窗

4.4 品管檢測實驗結果及誤差

利用 DAQ 卡 AIO ~ 3 設置為風速計訊號量測端,其中 AIO 接到比較源, AI1 ~ 3 接到其餘三支待測 風速計,風速計將會傳送原始的電壓訊號給 Excel 表,再經由 Excel 試算表換算成風速 (m/s),品管人 員即可在 Excel 表中修改訊號範圍對應表·如表 2。而根據品管人員需求·自動檢測的同時系統能及時 監控風洞的風速與風速計訊號量測值。

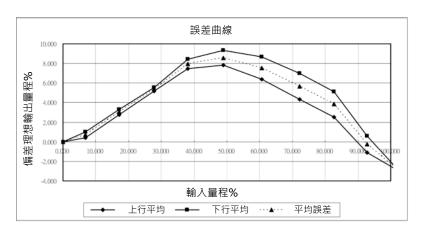
表2 Excel 訊號範圍對應表

宇田控制科技股份有限公司

品管檢測紀錄

			V		V		m/s		m/s
參考源訊號範圍AIO			2.00050591	~	10	對應	0	~	60
待測A訊號範圍AI1			2.05520621	2	10	對應	0	~	20
待測B訊號範圍AI2			0	~	10	對應	0	~	10
待測C訊號範圍AI3			0	2	10	對應	0	~	10
時間(sec)	AI0(V)	AI1(V)	AI2(V)	AI3(V)	AI4控制(V)	AI0(m/s)	AI1(m/s)	AI2(m/s)	AI3(m/s)
1	1.99738	2.05627	0	0	0	-0.0234833	0.00268802	0	0
2	1.99921	2.05521	0	0	0.00015	-0.0097424	-5.34E-07	0	0
3	1.99905	2.05475	0	0	0.00305	-0.01089	-0.001151	0	0

風速計的訊號經紀錄後,需取出風速穩定時記錄到的訊號計算。記錄上行程和下行程各試驗點上取得 的輸出信號值與比較源相減計算出誤差。輸出誤差以理想輸出量程的百分數表示。對於每一個試驗點, 從連續循環中分別獲取的上行程和下行程誤差的平均值,再從這些平均值中得出該試驗點三次循環的總 平均值。將所有誤差值與平均值列表如表 3. 誤差值以圖形表示如圖 15。


表3 裝置誤差一覽表

裝置誤差一覽表											
AI1		第1循環		第2循環		第3循環		循環平均			
		誤差(理想量程的%)									
輸入量	上行實際	下行實際	上行實際	下行實際	上行實際	下行實際	上行平均	下行平均	平均誤差		
程的%	%	%	%	%	%	%	%	%	%		
0.000	-0.004		-0.021		-0.013		-0.013	-0.013	-0.013		
6.906	0.630	0.978	0.247	1.009	0.264	1.016	0.380	1.001	0.691		
17.220	3.230	3.212	2.441	3.387	2.630	3.291	2.767	3.297	3.032		
27.769	5.849	5.547	4.785	5.490	4.801	5.655	5.145	5.564	5.354		
38.046	7.839	8,273	7.282	8.481	7.201	8.493	7.441	8.416	7.928		
48.925	8.116	9.203	7.610	9.340	7.725	9.380	7.817	9.307	8.562		
60.625	6.301	8.554	6.504	8.721	6.367	8. <mark>688</mark>	6.391	8.654	7.522		
72.164	4.535	6.799	4.220	7.107	4.312	6. <mark>974</mark>	4.356	6.960	5.658		
82.627	2.594	5.393	2.426	5.001	2.593	5.012	2.537	5.135	3.836		
92.726	-1,075	0.976	-1 193	0,441	-1.007	0.381	-1.092	0.599	-0.246		
102.669		-2.705		-3.213		-3.122	-3.014	-3.014	-3.014		
	±=1 064%	7 /									
X/\ ± X .	1 1.00170										
		最大回差=	2.886%	不精確度=-3.213%,+9.041%			最大量測誤差=9.041%				
	輸入量 程的% 0.000 6.906 17.220 27.769 38.046 48.925 60.625 72.164 82.627 92.726 102.669	輸入量 上行實際 程的% % 0.000 -0.004 6.906 0.630 17.220 3.230 27.769 5.849 38.046 7.839 48.925 8.116 60.625 6.301 72.164 4.535 82.627 2.594 92.726 -1.075	輸入量 上行實際 下行實際 程的% % % 0.000 -0.004 0.978 17.220 3.230 3.212 27.769 5.849 5.547 38.046 7.839 8.273 48.925 8.116 9.203 60.625 6.301 8.554 72.164 4.535 6.799 82.627 2.594 5.393 92.726 -1.075 0.976 102.669 -2.705	第1循環 第2: 輸入量 上行實際 下行實際 上行實際 程的% % % 0.000 -0.004 -0.021 6.906 0.630 0.978 0.247 17.220 3.230 3.212 2.441 27.769 5.849 5.547 4.785 38.046 7.839 8.273 7.282 48.925 8.116 9.203 7.610 60.625 6.301 8.554 6.504 72.164 4.535 6.799 4.220 82.627 2.594 5.393 2.426 92.726 -1.075 0.976 -1.193 102.669 -2.705	第1循環 第2循環 輸入量 上行實際 下行實際 上行實際 下行實際 程的% % % % 0.000 -0.004 -0.021 6.906 0.630 0.978 0.247 1.009 17.220 3.230 3.212 2.441 3.387 27.769 5.849 5.547 4.785 5.490 38.046 7.839 8.273 7.282 8.481 48.925 8.116 9.203 7.610 9.340 60.625 6.301 8.554 6.504 8.721 72.164 4.535 6.799 4.220 7.107 82.627 2.594 5.393 2.426 5.001 92.726 -1.075 0.976 -1.193 0.441 102.669 -2.705 -3.213	第1循環 第2循環 第3名 輸入量 上行實際 下行實際 上行實際 下行實際 上行實際 程的% % % % % 0.000 -0.004 -0.021 -0.013 6.906 0.630 0.978 0.247 1.009 0.264 17.220 3.230 3.212 2.441 3.387 2.630 27.769 5.849 5.547 4.785 5.490 4.801 38.046 7.839 8.273 7.282 8.481 7.201 48.925 8.116 9.203 7.610 9.340 7.725 60.625 6.301 8.554 6.504 8.721 6.367 72.164 4.535 6.799 4.220 7.107 4.312 82.627 2.594 5.393 2.426 5.001 2.593 92.726 -1.075 0.976 -1.193 0.141 -1.007 102.669 -2.705 -3.213 -3.213	第1循環 第2循環 第3循環 輸入量 上行實際 上行實際 下行實際 程的% 上行實際 下行實際 上行實際 下行實際 上行實際 下行實際 程的% % % % % 0.000 -0.004 -0.021 -0.013 6.906 0.630 0.978 0.247 1.009 0.264 1.016 17.220 3.230 3.212 2.441 3.387 2.630 3.291 27.769 5.849 5.547 4.785 5.490 4.801 5.655 38.046 7.839 8.273 7.282 8.481 7.201 8.493 48.925 8.116 9.203 7.610 9.340 7.725 9.380 60.625 6.301 8.554 6.504 8.721 6.367 8.688 72.164 4.535 6.799 4.220 7.107 4.312 6.974 82.627 2.594 5.393 2.426 5.001 2.593 5.012 92.726 -1.075 0.976 -1.193 0.441 -1.007 0.381 102.669 -2.705 -2.705	第1循環 第2循環 第3循環 循環	第1循環 第2循環 第3循環 循環平均 輸入量 上行實際 下行實際 下行實際 下行實際 下行實際 下行實際 下行實際 下行實際 下		

由於測量次數有限,因此以簡 單的數學方法而不採用統計學方 法處理誤差與精確度有關的因 素,下列對不同的處理方法做了 說明。

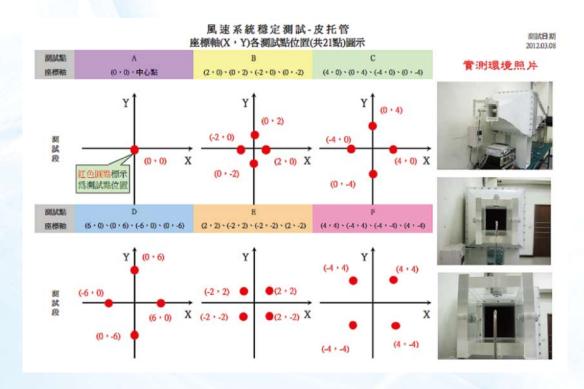
(1) 不精確度:

確定不精確度的方法是從 表3中分別選擇任一試驗 循環中增加或減少輸入時 任一被測值對理想值的最

▲圖15 上行下行誤差圖

大正和負偏差,並以理想輸出量程的百分數表示和列入報告。

(2) 測量誤差及最大誤差:


確定測量誤差的方法是從表3的平均上行程誤差和平均下行程誤差中選擇偏離最大的正或負數 值。

(3) 不重複性:

不重複性是在相同的工作條件下,以相同的輸入值從一個方向做全範圍移動時,在短時間內對輸 出做多次連續測量取得的極限值之間的代數差。通常以理想輸出量程的百分數表示,如表3與圖 15 •

(4) 回差:

回差代表相同條件下,反覆測試不同回合間的差異性。 此外,風洞腔體之風速穩定測試如圖 16 所示。

http://www.eyc-tech.com/listx.asp?NewsId=258

▲圖16 風洞腔體之風速穩定測試圖 [14]

万、結論

本研究整合實驗腔體之風速自動控制·實現 PC base 風速計品管檢測系統·以 DAO 針對風速感測器 量測數據自動記錄·品質檢驗標準計算·最後以 Excel 品管報表產出。經由實驗的結果驗證可以歸納下 列效益:

- (1)經由可控制風速檢測腔體建構(含風洞更新設計),可任意設定待測風速控制及風速計校正。
- (2)完成之PC-based自動化風速控制與風速對品管檢測系統‧可供風速產品之品管用途。
- (3)自動完成風速自動品管檢測報表輸出,可簡化人工之品管計算作業。

六、誌 謝

感謝宇田控制科技股份有限公司 [15] 的產學合作計畫贊助,並提供相關設備與技術支援。(http: //www.yuden.com.tw/index.asp)

十、参考文獻

- [1] G. Rizzoni, 電機工程概論: 麥格羅希爾, 2002.
- [2] 周杏鵬, 仇國富, 王壽榮, and 操家順, 現代檢測技術, 北京,高等教育出版社, 2004.
- [3] N. Tatman, "Wind Tunnel Design and Operation," 2008.
- [4] M. P. G. Johl and P. Render, "Design methodology and performance of an indraft wind tunnel," Aeronautical pp. 465 - 474, 2004.
- [5] K. Butler, D. Cancel, B. Earley, S. Morin, E. Morrison, and M. Sangenario, "Design and Construction of a Supersonic Wind Tunnel," Aerospace and Mechanical Engineering, Worcester Polytechnic Institute, 2010.
- [6] 陽煌棋,"具遠端監視功能之風速計研製,"碩士論文,國立台灣科技大學電子工程系,2007.
- [7] Advantech. (2011). Advantech USB4716. Available: http://www.advantech.com/
- [8] J. E. Sargison, G. J. Walker, and R. Rossi, "Design and calibration of a wind tunnel with a two dimensional contraction," in 15th Australasian Fluid Mechanics Conference, Australia, 2004.
- [9] 汪翠英, 裴鋒, "LabVIEW中Excel報告生成功能開發," 儀表技術, vol. 3, pp. 60 62, 2006.
- [10] 王衛華, "在LabVIEW中導入導出Excel 文件程序設計," 儀表與計量技術, 2010.
- [11] 過程測量和控制裝置通用性能評定方法擴展功能和程序, 國際電工委員會, 2000.
- [12] IEC International standard, "IEC 61298 2:E2 PROCESS MEASUREMENT AND CONTROL DEVICES - GENERAL METHODS AND PROCEDURES FOR EVALUATING PERFORMANCE -Part 2: Tests under reference conditions", 2008.
- [13] 中華人民共和國國家質量技術監督局,「GB/T 18271.2-2000過程量測和控制裝置通用性能評 定方法與程序第2部分:參比條件下試驗」,2001.
- [14] 鎰田科技股份有限公司, 自動化儀表/控制元件, http://www.eyc-tech.com/, 2011.
- [15] 宇田控制科技股份有限公司, http://www.yuden.com.tw/, 2011.